000 | 02986cam a2200361 i 4500 | ||
---|---|---|---|
999 |
_c426 _d426 |
||
001 | 17969217 | ||
003 | OSt | ||
005 | 20181108131242.0 | ||
008 | 131209s2014 flu b 001 0 eng | ||
010 | _a 2013048808 | ||
020 | _a9781482217315 (paperback : alk. paper) | ||
035 | _a(DNLM)101621754 | ||
040 |
_aDNLM/DLC _cINAYA MEDICAL COLLEGE _erda _dDLC |
||
041 | _aENG | ||
042 | _apcc | ||
050 | 0 | 0 |
_aRC386.6.M34 _bC66 2014 |
060 | 1 | 0 | _aWN 185 |
082 | 0 | 0 |
_a616.07548 CCM _223 |
100 | 1 |
_aConstantinides, Christakis, _eauthor. |
|
245 | 1 | 0 |
_aMagnetic resonance imaging : _bthe basics |
264 | 1 |
_aBoca Raton : _bCRC Press, Taylor & Francis Group, _c[2014] |
|
300 |
_axxix, 205 pages ; _c26 cm. |
||
336 |
_atext _2rdacontent |
||
337 |
_aunmediated _2rdamedia |
||
338 |
_avolume _2rdacarrier |
||
504 | _aIncludes bibliographical references (pages 195-199) and index. | ||
520 | _a"Preface Book Synopsis Magnetic resonance imaging (MRI) is a rapidly developing field in basic, applied science and clinical practice. Research efforts in this field have already been recognized with five Nobel prizes, awarded to seven Nobel laureates during the last 69 years. The book begins with a general description of the phenomenon of magnetic resonance and a brief summary of Fourier transformations in two dimensions. It proceeds to examine the fundamental principles of physics for nuclear magnetic resonance (NMR) signal formation and image construction. To this extent, there is a detailed reference to the mathematical formulation of MRI using the imaging equation, description of the relaxation parameters T1 and T2, and reference to specific pulse sequences and data acquisition schemes. Additionally, numerous image quantitative indices are presented, including signal, noise, signal-to-noise, contrast, and resolution. The second part of the book discusses the hardware and electronics of an MRI scanner, the typical measurements and simulations of magnetic fields based on the law of Biot-Savart, followed by an introduction to NMR spectroscopy, and to dedicated spectral techniques employing various pulse sequences. The third part discusses advanced imaging techniques. While the list may contain numerous modern applications, including cardiac MR, coronary and peripheral angiography, flow, diffusion, and functional MRI (fMRI), the focus is maintained on parallel imaging. The book is enriched with numerous worked examples and problem sets with selected solutions. Nobel Prizes in Magnetic Resonance Magnetic resonance imaging is a field that emerged right after the Second World War, as a result of experimental work that was initiated initially for spectroscopy"--Provided by publisher. | ||
650 | 1 | 2 | _aMagnetic Resonance Imaging. |
650 | 2 | 2 | _aMagnetic Resonance Spectroscopy. |
906 |
_a7 _bcbc _corignew _d1 _eecip _f20 _gy-gencatlg |
||
942 |
_2ddc _cBK |